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Abstract—Real-world data usually suffers from severe class
imbalance and long-tailed distributions, where minority classes
are significantly underrepresented compared to the majority
ones. Recent research prefers to utilize multi-expert architectures
to mitigate the model uncertainty on the minority, where collabo-
rative learning is employed to aggregate the knowledge of experts,
i.e., online distillation. In this paper, we observe that the knowl-
edge transfer between experts is imbalanced in terms of class
distribution, which results in limited performance improvement
of the minority classes. To address it, we propose a re-weighted
distillation loss by comparing two classifiers’ predictions, which
are supervised by online distillation and label annotations,
respectively. We also emphasize that feature-level distillation will
significantly improve model performance and increase feature ro-
bustness. Finally, we propose an Effective Collaborative Learning
(ECL) framework that integrates a contrastive proxy task branch
to further improve feature quality. Quantitative and qualitative
experiments on four standard datasets demonstrate that ECL
achieves state-of-the-art performance and the detailed ablation
studies manifest the effectiveness of each component in ECL.

Index Terms—Image Classification, Long Tail Recognition,
Collaborative Learning, Knowledge Distillation.

I. INTRODUCTION

RECENT advancements in computer vision, e.g., visual
recognition [1], video analysis [2] and person re-ID [3],

[4], heavily rely on the large-scale, high-quality, and balanced
datasets, such as ImageNet [5], COCO [6] and Place [7],
which require laborious collections and careful annotations.
Regrettably, collecting rare instances entails gathering more
dominant samples because real-world data naturally exhibits
imbalanced distributions w.r.t. its categories. Hence, datasets
typically follow a long-tailed distribution, with only a few
labels having a majority of the samples, while most labels are
associated with limited instances. In Long Tail Recognition
(LTR), the minority classes (tail) are always overwhelmed by
the majority classes (head), resulting in low performance for
the tail. As a result, the models trained on the long-tailed
dataset show great uncertainty, where the outputs for few-shot
classes vary remarkably, despite the same training settings.

Most existing work addresses the LTR issue by improving
the feature representations of tail classes or re-balancing the
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(a) Collaborative Learning (b) ECL (Ours)

Fig. 1: The illustration of collaborative learning in the multi-
expert framework. F : feature encoder. W: classification head.
Different from previous work, we re-balance the distillation
and conduct online distillation on both feature and logit levels.

contribution of different classes. However, some intuitive ap-
proaches like over-sampling the tail [8] or under-sampling the
head [9] result in severe robustness problems especially in tail
classes. Although some well-designed approaches enrich tail
samples in more elegant ways, such as through feature combi-
nations [10], [11], [12] or pseudo sample generation [13], [9],
[14], the problem of model preference towards head classes
remains unresolved. To calibrate the label distribution gap
between the train and test dataset, the Balanced Cross-entropy
(BC) loss is proposed based on Bayesian Theory, which
compensates the model bias by label frequency on standard
softmax Cross-Entropy (CE) loss [15], [16], [17], [11]. Based
on the effective BC loss, Multi-Expert (ME) [18], [19], [20]
framework is proposed to further address model uncertainty on
the tail classes. For example, NCL [20] trains several expert
networks in parallel and aggregates each expert’s knowledge
in a nested collaborative manner, i.e., online Knowledge
Distillation (KD) on the logit level (see Fig. 1a), where we
refer to each network as an expert.

However, our experimental observations indicate that the
transfer knowledge (distillation logit value) is not balanced
w.r.t. class in vanilla collaborative learning (see Sec. IV). The
tail samples are always under-represented during the distilla-
tion process, which damages the balanced knowledge transfer.
Such imbalance leads the online distillation to boost the head
performance while suppressing the transfer of tail knowledge.
Consequently, the tail remains unimproved compared to the
single expert baseline. Recent research [21] suggests that
the KD-trained classifier is more confident for the over-
represented samples than the label-trained one because the
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distillation tends to learn more generalized context knowledge
compared to label supervision, which mainly provides content-
invariant knowledge. Inspired by it, we propose a novel re-
weighted distillation loss by comparing the predictions of
two different classifiers. Moreover, we propose to perform
additional collaborative distillation at the feature level, which
significantly boosts model performance and feature robustness.
We further incorporate a contrastive proxy task with a par-
allel branch to improve feature representations. As a result,
we propose a novel Effective Collaborative Learning (ECL)
framework to improve vanilla NCL, which distinguishes from
previous ME frameworks in two aspects:

Single expert training. We propose the Balanced Knowl-
edge Transfer (BKT) module to conduct balanced knowledge
distillation. Following the feature encoder, we add an extra ref-
erence classifier parallel to the original classifier. The reference
classifier is only supervised by the BC loss and is not involved
in the expert collaboration, allowing it to only focus on the
content-invariant knowledge. We compare the predictions of
two classifiers to estimate whether the input samples are over-
confident or not and re-weight the KD loss to assign the under-
represented samples with larger weights (Fig. 1b). For each
expert, we introduce a siamese branch to conduct Contrastive
Proxy Task (CPT) and update parameters in a momentum-
based moving average scheme [22]. The CPT is designed
to increase the feature similarity of an image’s two views
to facilitate model discriminative ability. Note that we will
discard the additional reference classifier and siamese branch
during the inference phase to keep the consistent architecture
with previous ME approaches.

Expert knowledge aggregation. In the proposed ECL, each
expert is collaboratively learned with others. Note that the
knowledge is transferred not only on the logit level but also
on the feature level (see Fig. 1b), which facilitates stable
representation learning. Our Feature Level Distillation (FLD)
is a simple yet effective improvement that encourages all
experts to extract well-represented features. We also present
in-depth analysis to investigate how FLD influences the model
performance qualitatively and quantitatively (see Sec. VI).

With the above observations, insights, and techniques, we
build our final ECL (Fig. 1b&3), which contains three key
components, namely the balanced knowledge transfer module,
feature level distillation, and contrastive proxy task. Extensive
experiments in four benchmarks justify the superiority of ECL.
In summary, our contributions are as follows:

1) We pinpoint the imbalance of transfer knowledge in
previous collaborative learning methods and propose a
balanced knowledge distillation loss to tackle it.

2) We propose to conduct knowledge distillation on both
feature and logit levels, which significantly enhances
model performance and robustness.

3) We propose the ECL framework to collaboratively train
multiple experts to overcome the head preference and tail
uncertainty in long-tailed recognition.

4) We present extensive experiments and demonstrate ECL
achieves state-of-the-art performance on CIFAR10/100-
LT, ImageNet-LT, and iNaturalist 2018 datasets.

This paper is organized as follows: Sec. II provides a brief
overview of related work. In Sec. III, we introduce the relevant
concepts and baselines. We discuss our motivation based on
experimental observations in Sec. IV and provide a detailed
design in Sec. V. Sec. VI demonstrates the effectiveness
of ECL through extensive experiments and ablation studies.
Finally, Sec. VII concludes our work.

1. We pinpoint the imbalance of transfer knowledge in
previous collaborative learning methods and propose a bal-
anced knowledge distillation loss to tackle it. 2. We propose
to conduct knowledge distillation on both feature and logit
levels, which significantly enhances model performance and
robustness. 3. We propose the ECL framework to collabora-
tively train multiple experts to overcome the head preference
and tail uncertainty in long-tailed recognition. 4. We present
extensive experiments and demonstrate ECL achieves state-of-
the-art performance on CIFAR10/100-LT, ImageNet-LT, and
iNaturalist 2018 datasets.

II. RELATED WORK

Feature-wise Rebalance Learning. To avoid damaging model
generalization severely from simply over/under-sampling the
tail/head classes [23], [24], [9], recent advances resort combi-
nation of the head to enrich the feature of tail samples [13], [9],
[25] or increase the tail frequency implicitly [10], [26], [11],
[14]. The two-stage methods [27], [24], [28] decouple feature
learning from downstream tasks (e.g., classification) to reduce
the bias on the classifier. Several methods [29], [22], [30] also
leverage self-supervised learning to eliminate the influence
of imbalanced distribution. SSP [31] and HybirdSC [32]
demonstrated that self-supervised or semi-supervised train-
ing can boost performance through larger train epochs and
GPU memory. Recent state-of-the-art [33], [32], [34], [35]
introduces fixed or learnable proxy to overcome performance
degradation due to the absence of label supervision.
Reweight-wise Learning. To mitigate the inherent statistical
bias in LTR, researchers have designed meticulous loss to
learn larger margins among different classes [27], [16], [17],
[15], [11], [36], [37], [38] or assign various weights for
different classes based on the label frequencies [39], [40],
[41], [28], [42]. In particular, the simple yet effective BC
loss [16], [15], [17], [11] has been widely adopted by state-
of-the-art [20], [33], [35], [43]. Unfortunately, BC loss is not
always compatible with the above feature-wise methods for
the inconsistency of the statistical label frequency.
Multi-expert Learning. To tackle the tail uncertainty [44],
[19], the multi-expert framework is increasingly valued, which
typically contains two components, i.e., single expert training
and experts knowledge aggregation [8], [45], [18], [19], [43].
BBN [8] trains two experts with instance sampling and inverse
sampling, respectively, and aggregates their knowledge in
a cumulative weighting manner. LFME [18] trains multiple
experts with different instance groups and weights the logits
from different experts as the final output. RIDE [19] enlarges
the KL divergence to train experts and cascades all the experts
via decision gates for inference. TADE [43] trains experts by
BC loss with different assumed statistical prior and weights
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each expert’s output, which is obtained via post-hoc con-
trastive training. Another feasible expert aggregation manner is
knowledge distillation [46]. DiVE [47] shows the effectiveness
of distillation in the LTR. SSD [48] trains expert backbone
by self-distillation learning and classifier through balanced
sampling. CBD [44] trains different teachers by various data
augmentations and random seeds. Then, it trains students with
balance sampling and knowledge from the above teachers.
NCL [20] trains experts in a nested manner and adopts online
inter-distillation with each other to reduce the tail uncertainty.
However, these methods mainly conduct logit-level distillation
while ignoring the imbalance of transfer knowledge.

III. PRELIMINARIES

A. Task Definition.

Given an N -sample dataset D = {(xi,yi)}Ni=1 from C
classes, where xi ∈ X denotes the i-th instance with its
label, yi ∈ Y := {y1, . . . ,yC}. We assume the dataset D is
long-tailed distributed and denote each category as Ci and its
instance number as ni = |Ci|. Furthermore, we consider a base
classification model M := {Fθ,Wφ}. It contains a learnable
feature encoder Fθ and a classifier Wφ, parameterized by θ,
φ, respectively. Given an input image x, the encoder extracts
the feature representation v := Fθ(x) ∈ Rd. Then, the
classifier (typically fully connected layers) outputs the logits
z :=Wφ(v) ∈ RC . We assume K experts in the collaborative
learning framework with the same architectureM and denote
the k-th expert as Ek := {Fθk ,Wφk

}.

B. Balanced Cross-entropy Loss.

Balanced Cross-entropy (BC) loss is effective and widely
adopted in LTR tasks [16], [15], [17], [11], [20], [35]. It com-
pensates the statistical bias via logits adjustment on standard
Cross-Entropy (CE) loss. Consider the expert Ek is supervised
by CE loss with standard softmax:

LCE = − log (p(yi|x; θk, φk)) = log

1 + ∑
yj 6=yi

ezyj
−zyi

 .
(1)

Here, we denote the label distribution prior of train/test data
as ps(y)/pt(y) respectively. Based on the Bayesian theory,
the posterior is proportional to prior times likelihood, where
the likelihood ps(x|y) maximization is equal to the model
parameters (i.e., θ, φ) learning. Typically, the posterior pt(y|x)
is equivalent to likelihood ps(x|y) between train and test set
when ps(y) ≡ pt(y). However, if we take the statistical
distribution of label y as its prior p(y), we can derive the
following bias from the mismatch of ps(y) and pt(y):

pt(y|x) =
ps(x|y) · ps(x)

ps(y)
· pt(y)
pt(x)

∝ ps(x|y) · pt(y)
ps(y)

=

pt(y)
ps(y)

· ezyi∑
j
pt(yj)
ps(yj)

· ezyj

=
ezyi

−(log(ps(yi))−log(pt(yi)))∑
j e

zyj
−(log(ps(yj))−log(pt(yj)))

,

(2)
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Fig. 2: Average distillation logits value and prediction distri-
bution w.r.t. classes. We conduct an evaluation of vanilla NCL
and proposed ECL on CIFAR100-LT (γ = 100). The class
index is ranked according to the training instance number.

where ps(x) and pt(x) are regular terms (i.e., normal distribu-
tion). Here, we get statistical bias of class yi as log ps(yi)−
log pt(yi). Combining Eq. 1 and Eq. 2, we compensate for it
in CE loss with a hyper-parameter τ as follows:

LBC = − log

[
ezyi

+τ ·(log(ps(yi))−log(pt(yi)))∑
j e

zyj
+τ ·(log(ps(yj))−log(pt(yj)))

]
. (3)

C. Nested Collaborative Learning

To reduce the great uncertainty in long-tailed learning, Li et
al. [20] propose Nested Collaborative Learning (NCL) to learn
multiple experts parallelly and aggregate the expert knowledge
via nested online distillation on the logit-level (see Fig. 1a).
The NCL performs online inter-distillation on both partial
and full views, while incorporating an instance discrimination
task as well. All experts adopt the same BC loss and hyper-
parameter settings. It contributes to complementary expert
learning and achieves state-of-the-art performance whether by
using a single expert or an ensemble. Our ECL is motivated by
the experimental observations on it, which will be elaborated
in the following section.

IV. MOTIVATION

Our motivation stems from the following inspiring observa-
tions 1: The transfer knowledge during online distillation is
imbalanced w.r.t. classes in vanilla nested collaborative learn-
ing. 2: The optimal hyper-parameter of Eq. 3 for each expert
is not consistent, which hinders performance improvement.

For multi-expert collaborative learning approaches, the ex-
pert knowledge aggregation typically conduct at the logit level.
For observation 1, we demonstrate that previous distillation at
logit level (Fig. 1) is ineffective. In Fig. 2a, we visualize the
logit-level transfer knowledge (i.e., distilled logits value) and
model prediction numbers w.r.t. class of vanilla collaborative
learning and ours. The tail classes present lower knowledge
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Fig. 3: The single expert architecture and corresponding training pipeline. Online distillation is performed at both the feature-
level and logit-level. Auxiliary modules like ref head, MoCo encoder & head will be discarded during the inference phase.

weight and thus result in fewer predictions. Similar observa-
tions also occur when training with balanced datasets, where
the imbalance correlates to both label and context [21]. While
NCL eliminates the model preference by compensating the
label frequency with BC loss, the content imbalance remains
unsolved. In this paper, we propose a balanced distillation loss
to manage the label and context distribution simultaneously.
Fig. 2b shows that our proposal ameliorates the transfer knowl-
edge imbalance and model prediction preference remarkably.

For observation 2, we conduct an in-depth analysis by
implementing the BC loss of NCL in a post-hoc manner [16],
[17], [11] as a softmax variation (Eq. 4). On the CIFAR100-
LT (γ = 100), the best performance achieves at τ ≈ 1
(1.2, 1.3 or others) instead of theoretical τ = 1. It suggests
that the statistical bias learned by each expert is inaccurate
and inconsistent, which can be amplified and distorted further
if we conduct knowledge aggregation on the logit level. As
a comparison, label distribution seldom affects feature-level
distillation because it only works on the logit-level [24].
Hence, we conduct feature level distillation to overcome this
inconsistency. We resort optimization-related diagnostic tools
(e.g., average feature distance among experts and normalized
loss landscapes [49]) to further explore the feature distillation
mechanism, and present the visualized results in Sec. VI.

p(yi|x; θ, φ) =
ezyi

−τ ·(log(ps(yi))−log(pt(yi)))∑
j e

zyj
−τ ·(log(ps(yj))−log(pt(yj)))

. (4)

V. METHODOLOGY

In this section, we first propose a novel transfer module to
rebalance the knowledge of each expert. Then we design a
novel knowledge aggregation pipeline to manage the feature-
wise collaboration and eliminate the statistical bias among
multi-experts. We also leverage the unsupervised instance dis-
crimination proxy to further boost the feature representation.
Finally, we describe how to adjust the model for inference.

A. Balanced Knowledge Transfer
As discussed in Sec. IV, the imbalance is two-fold. While

BC loss manages to eliminate the label imbalance by lever-
aging the distribution gap, it is challenging to eliminate the

implicit context prior, which is not identically distributed with
the labels. Hence, we try to alleviate this issue from another
perspective. In Fig. 3, we propose the balanced knowledge
transfer (BKT) module to tackle the imbalance issue when
transferring the logit-level knowledge (Fig. 2).

The proposed BKT is based on the experimental observa-
tions that the classifier supervised by knowledge distillation is
more confident for the over-represented samples than the ones
supervised by labels [46], [21]. We attempt to identify under-
represented samples by comparing the predictions gap between
two classifiers. Specifically, for the balanced distillation, we
propose an extra reference headWr

φ, which is only supervised
by the BC loss and parallel to the vanilla classification head
Wc
φ. With more soft supervision given by the KD loss, cls head
Wc
φ learns more context equivariance knowledge compared to

the ref headWr
φ, which only focuses on the context invariance

knowledge (i.e., class labels). Therefore, BKT automatically
identifies whether a sample is under-represented by comparing
the decisions from the two heads:

ŷri =
exp

(
zryi

/σr
)

∑
yj∈C exp

(
zryj

/σr
) , ŷci =

exp
(
zcyi

/σc
)

∑
yj∈C exp

(
zcyj

/σc
) ,
(5)

where zr/zc is the logits given by ref Wr
φ/clsWc

φ respectively
and σ is corresponding standard deviation for normalization.
Then, we re-weight the KD loss for each sample as follows:

ŵxi
= H(ŷri ,yi)/H(ŷci ,yi) =

∑
yj∈C 1(yj = yi) log ŷ

c
j∑

yj∈C 1(yj = yi) log ŷrj
,

(6)
where H is the corresponding cross-entropy. With Eq. 6,
we assign the under-represented samples (cls head is less
confident than the ref head) with a large weight and the over-
represented samples (cls head is more confident than the ref
head) with a small weight.

B. Balanced Online Distillation

Following NCL [20], we employ the online distillation
framework to learn multiple experts collaboratively. On the
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logit level, we implement the re-weighted KD loss between
each expert pair and the total loss will be:

Llogit
kd =

∑
k

∑
q 6=k

∑
xi
ŵxi
· τ2 · KL(ς(z

k,c
i

τ )||ς(z
q,c
i

τ ))

N ·K · (K − 1)
, (7)

where ς indicates softmax, τ is the temperature factor and
KL(p||q) =

∑
i pi · log(pi/qi). z

k,c
i is the logits given by the

cls head Wc
φ of expert k and ŵxi

is given by Eq. 6.
Different from previous methods, we pinpoint that the distil-

lation on the feature level will capture more robust knowledge
in the LTR tasks, which can be formulated as follows:

Lfeature
kd =

∑
k

∑
q 6=k

∑
xi
τ2 · KL(ς(v

k
i

τ )||ς(v
q
i

τ ))

K(K − 1)
. (8)

Experimentally, the online distillation on feature level shows
significant effectiveness compared to logit level. we will
present in-depth investigations on the reason for its perfor-
mance and generalization in Sec. VI.

C. Contrastive Proxy Task

To learn more generalized features, we follow [22] to
adopt a contrastive proxy task in MoCo v2 manner. As
Fig. 3 shows, an extra MoCo encoder is employed to perform
instance discrimination, in which parameters are updated in a
momentum-based moving average scheme to provide negative
samples. For the feature vki given by expert k MoCo head,
we denote the normalized embedding of its copy image with
different augmentations as ṽki . For more negative pairs, a
dynamic queue Qk is employed to record historical feature
representations to save GPU memory. The info-NCE loss is
adopted to increase the feature similarity of the same image
while reducing the feature similarity of different images pairs,
which is computed as:

Lcon = −
∑
k

log
exp

(
vk

T

i ṽki /τ
)

∑
ṽk
j∈{Qk∪vkT

i }
exp

(
vk

T

i ṽkj /τ
) . (9)

D. Model Training

Based on the above designs, we propose our final ECL
in the multi-expert architecture, as Fig. 1&3 shows. To train
the whole model, we leverage the classification loss Lsup,
distillation loss Lkd, and contrastive loss Lcon for supervision.
Formally, Lsup compute the all experts BC loss between the
predicted logits and the ground-truth labels for ref & cls head:

Lsup =
1

K

∑
k

(
Lref

BC + Lcls
BC

)
(10)

Lkd estimate the KL divergence on logit & feature level,
while Lcon is used for the contrastive proxy task. Finally, the
overall loss is formulated as:

Lall = Lsup + α(Llogit
kd + Lfeature

kd ) + βLcon, (11)

where α and β are the hyperparameters to balance the contri-
bution of collaborative and contrastive learning.

E. Model Inference

Note that the MoCo branch and ref head Wr
φ are only de-

signed for effective model training. Therefore, in the inference
phase, we only preserve the feature encoder Fθ and cls head
Wφ to keep consistent model size with previous work. In
addition, we can achieve higher performance by averaging the
output logits from all experts as an ensemble model. In this
case, our model size will be the same as the previous NCL.

VI. EXPERIMENT

A. Datasets

CIFAR-10/100-LT. CIFAR-10/100 [54] have 10/100 classes
with 60, 000 images in 32 × 32 resolution. We follow [39],
[27] to sample the train set of each class with exponential
functions to create the long-tailed versions while remaining
the validation set uniformly distributed. The imbalance factor
γ indicates the skewness of the dataset, which is the ratio
between the most and the least frequent classes. We employ
γ = [10, 50, 100, 200] for comprehensive comparisons.

ImageNet-LT is the subset of the large-scale balanced
ImageNet-1k [5], widely used in classification and localization
tasks. The train data in ImageNet-LT are sampled through
Pareto distribution with power value α = 6. It contains
115.8K images from 1, 000 classes. The most/least class num-
ber is 1, 280/5 respectively (γ = 256). we utilize the balanced
validation set constructed by [39] for fair comparisons.

iNaturalist 2018 [55] is the large-scale real-world LTR
dataset. With over 437.5K images and 8, 142 classes (γ =
500), it suffers from severe label long-tailed distribution and
fine-grained challenges. We follow [27] to utilize the official
splits of training and validation sets in our experiments.

B. Evaluation Metrics

Top-1 Acc. In LTR, the model is trained in an imbalanced
dataset while evaluated in a balanced test set. Therefore, we
adopt the common evaluation protocol Top-1 Acc. to estimate
the model performance of each category.

Group Acc. In LTR, we focus more on the tail performance.
Therefore, we follow [43] to group the test data into Many-
shot (> 100), Medium-shot (20 ∼ 100), and Few-shot (< 20)
according to the corresponding sample number w.r.t. different
classes in the train set, and evaluate the accuracy of these
groups separately.

Loss-Acc Landscapes. To investigate the feature-level distil-
lation, we visualize the loss/accuracy landscapes of different
models [49]. More specifically, we perturb the model weights
by varying degrees through a series of Gaussian noises. The
noise level is normalized to the l2-norm of each filter to
represent the effects of different weight amplitudes.

Class-wise Average Feature Distance. On the balanced test
dataset, a well-trained encoder should map the input images
into a distinguishable feature space. To evaluate the feature
similarity, For class yi, we calculate the class-wise average l2
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TABLE I: Top-1 accuracy (%) on CIFAR-10/100-LT with ResNet32 backbone. γ: imbalance factor. Results are sorted according
to method category. RW: re-weight wise methods. FW: feature improvement wise methods. ME: multi-expert frameworks.
Underline: the best performance in each group. Bold: the best performance overall. We report the performance from original
papers and reproduce results for unavailable settings according to their official repos.

Dataset Type CIFAR100 CIFAR10

γ RW FW ME 10 50 100 200 10 50 100 200

CE [39] - - - 55.7 44.0 38.3 34.6 86.4 75.0 70.4 66.2

Focal Loss [50] X 55.8 44.3 38.4 35.6 86.6 76.7 70.4 68.9
τ Norm [24] X 59.1 48.2 43.6 39.3 87.8 82.8 75.1 70.3
Causal Norm [51] X 59.6 50.3 44.1 - 88.5 83.6 80.6 -
LADE [17] X 61.6 50.1 45.6 40.7 88.3 82.1 79.1 73.9
DRO [52] X 63.4 57.6 47.3 - - - - -
TDE + IDR [53] X - 50.3 44.9 - - 84.5 79.6 -

M2m [13] X 58.2 - 42.9 - 87.9 - 78.3 -
CAM [9] X - 51.7 47.8 - - 83.6 80.0 -
DiVE (2 Experts) [47] X X 62.0 51.1 45.4 - - - - -
CMO+RIDE (4 Experts) [14] X X 60.2 53.0 50.0 - - - - -
TSC [34] X 59.0 47.4 43.8 - 88.7 82.9 79.7 -

LDAM+DRW [27] X X 58.7 46.6 42.0 38.5 88.2 81.3 77.0 74.7
MiSLAS [28] X X 63.2 52.3 47.0 - 90.0 85.7 82.1 -
Prior-LT [11] X X 61.3 51.1 45.5 42.1 89.7 84.3 82.8 78.5
PaCo [33] X X 64.2 56.0 52.0 47.8 91.5 88.0 85.4 82.3
BCL [35] X X 64.9 56.6 51.9 - 91.1 87.2 84.3 -
GCL [38] X X - 53.6 48.7 44.9 - 85.5 82.7 79.0

LFME (3 Experts) [18] X 57.8 47.2 42.3 39.0 87.1 81.5 75.3 72.9
BBN (2 Experts) [8] X X 59.1 47.0 42.6 - 88.3 82.2 79.8 -
RIDE (4 Experts) [19] X 61.8 51.7 48.0 44.6 86.3 83.7 81.2 77.8
Hybrid-SC (2 Experts) [32] X X - 51.9 46.7 - - 85.4 81.4 -
SADE (3 Experts) [43] X X 63.6 53.9 49.8 44.7 90.0 85.8 82.9 78.0
SSD (2 Experts) [48] X 62.3 50.5 46.0 - - - - -
ACE (4 Experts) [45] X - 51.9 49.6 - - 84.9 81.4 -
NCL (3 Experts) [20] X X 63.8 58.2 54.2 49.5 91.1 87.3 85.5 82.2

ECL (3 Experts) X X X 67.3 59.9 56.3 51.4 91.8 88.9 86.5 83.6

distance between the outputs from two experts for all features
(Ayi

). Here, we calculate the distance between expert m and
n as follows:

Dm,n
i =

1

||Ayi
||
·
∑

vt∈Ayi

||vmt − vnt ||2. (12)

The smaller Di indicates that the experts learn stable feature
representations w.r.t. class yi, making it easier to finetune
model heads on the downstream tasks.

Expected Calibration Error. Calibration indicates the model
prediction reflects the actual likelihood of accuracy [59]. Let
p̂i be the confidence of the image xi, and divide dataset
D into several bin B with size m according to the value
of p̂i. Then, the reliability diagrams are proposed to vi-
sualize the model calibration by measuring the distance to
the ideal

∑
i∈Bm

1(ŷ = yi) ≡
∑
i∈Bm

1(ŷ = yi) for all
m ∈ {1, ...,M}. The Expected Calibration Error (ECE) is
proposed to quantitatively measure classifiers’ calibration:

ECE =
1

|D|

M∑
m=1

∑
i∈Bm

|1(ŷ = yi)− p̂i|. (13)

C. Implementation Details

For CIFAR-LT, we follow LTR-WD [42] to set weight
decay 5e − 3 for ResNet-32 and use stochastic gradient

descent with momentum 0.9. All models are trained for 200
epochs with the learning rate 0.01 and mini-batch 64. The
learning scheduler is Cosine Annealing [60] with an ending
rate of 0. Further, Cutout [61] and AutoAug [62] are used
to compensate for origin data augmentation strategies [63].
We adopt the MoCo augmentation [22] for better image
views in the contrastive branch. For large-scale datasets, we
follow LTR-WD [42] to set weight decay 5e − 4/1e − 4
for ImageNet-LT/iNaturalist 2018 and train 180/90 epochs,
respectively. We replace AutoAug with RandAug [64] while
keeping other settings consistent with CIFAR-LT. Finally, we
adopt horizontal flips as the post-hoc augmentation for better
performance.

Following previous work [22], [33], [20], we set temperature
factor τ = 1 and keep all MoCo hyper-parameters consistent
with NCL. For the hyper-parameters setting of ECL, we set
K = 3 experts, α = 0.6 and β = 1.0 by default. Results
are averaged from 5 (CIFAR-LT) or 3 (large-scale datasets)
random seeds.

D. Competing Methods

Baselines. The vanilla baseline (CE) conducts plain train-
ing with standard cross-entropy loss [39]. The com-
mon networks are ResNet-32 (CIFAR-10/100-LT), ResNet-
50 [63] (ImageNet-LT, iNaturalist 2018) and ResNeXt-50 [65]
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TABLE II: Top-1 accuracy (%) on ImageNet-LT & iNaturalist
2018. Results are sorted by publication time. R-50: ResNet-
50. RX-50: ResNeXt-50. Our ECL consistently outperforms
state-of-the-art by a large margin.

Method ImageNet-LT iNaturalist2018

R-50 RX-50 R-50

CE [39] 38.9 44.4 60.9
OLTR [56] 40.4 - 63.9
CB [39] 40.9 - 63.5
LDAM+DRW [27] 45.8 - 68.0
BBN [8] 48.3 49.3 66.3
NCM [24] 44.3 47.3 63.1
c-RT [24] 47.3 49.6 65.2
τ -Norm [24] 46.7 49.4 65.6
LWS [24] 47.7 49.7 65.9
BS [15] 53.0 - 66.4
RIDE (4 Expert) [19] 55.4 56.8 72.6
DisAlign [57] 52.9 53.4 70.6
DiVE [47] 53.1 - 71.7
SSD (2 Expert) [48] - 56.0 71.5
ACE (4 Expert) [45] 54.7 56.6 72.9
PaCo [33] 56.1 57.2 72.2
TSC [34] 52.4 - 69.7
RIDE+CMO (4 Expert) [14] 56.2 - 72.8
BCL [35] 56.0 57.1 71.8
CKT [58] - 54.2 -
GCL [38] 53.7 54.9 72.0
NCL (3 Expert) [20] 59.5 60.5 74.9
ECL (3 Expert) 60.6 61.7 75.8

TABLE III: Ablation study of ECL. We report ResNet32 on
CIFAR100-LT (γ = 100) and ResNet50 on ImageNet-LT.
BKT: balanced knowledge transfer module. FLD: feature level
distillation. CPT: contrastive proxy task.

BKT FLD CPT CIFAR100-LT ∆ ImageNet-LT ∆

- - - 52.2 - 55.1 -
X - - 53.7 + 1.5 56.4 + 1.3
- X - 54.7 + 2.5 58.9 + 3.8
- - X 54.2 + 2.0 57.6 + 2.5
X - X 54.9 + 2.7 57.9 + 2.8
- X X 55.8 + 3.6 59.9 + 4.8
X X X 56.3 + 4.1 60.6 + 5.5

(ImageNet-LT). In addition, to align with previous works that
contain some additional proposal-independent tricks implicitly,
we adopt the same settings with NCL for all our reproduced
results for fair comparisons.

Feature-wise methods modify the feature sampling or learn-
ing manners to cope with long-tailed datasets. M2m [13] gen-
erates pseudo samples for training and optimizing. CAM [9]
and CMO [14] enrich the training samples via feature com-
bination. DiVE [47] adopts knowledge distillation and takes
the teacher feature as an additional training sample for the
student model. Recent state-of-the-art [34], [33], [35] adopts
contrastive frameworks to improve representation learning.

Re-weight methods focus on label weighting [39], [50], [27],
[28] or logits adjusting [16], [17], [15], [11], [52], [53],
[38] based on standard cross entropy loss. In addition, some
methods [24], [51], [42] are also effective by directly adjusting
the classifier’s weight.

(a) Top-1 Acc (b) Few Acc

Fig. 4: Comparison of different expert number K on
CIFAT100-LT (γ = 100). The ensemble performance is
computed based on the averaging logits of all experts. We
report Top-1/Few-shot Acc and show that a larger expert
number K brings higher model performance. We set K = 3 to
leverage the performance and training memory consumption.

(a) α (b) β

Fig. 5: Hyper-parameter analysis of α and β on CIFAR100-
LT (γ = 100). We fix β = 1 in subfigure (a) and α = 0.6 in
subfigure (b). α = 0 means no collaborative learning in our
ECL, which results in poor Top-1 Acc performance.

(a) CE[39] (b) NCL[20] (c) ECL

(d) CE[39] (e) NCL[20] (f) ECL

Fig. 6: Visualized t-SNE results of ResNet32 on CIFAR10-LT
(a-c) and CIFAR100-LT (d-e). The scatters of the same color
indicate the same categories. Our ECL shows better intra-class
and inter-class distance to disentangle different categories.

Multi-expert methods have shown powerful generalization in
LTR and can be classified into two categories. 1) Each expert
learn different aspects of knowledge w.r.t. specific classes and
then aggregates together [18], [8], [19], [45], [32]. 2) Each
expert learns the same knowledge w.r.t. class to reduces the
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uncertainty on minority classes [43], [48], [20]. Note that our
ECL belongs to the latter.

E. Comparison with state-of-the-art

We conduct comprehensive comparisons on CIFAR-LT (see
Tab. I) and large-scale datasets (see Tab. II). For comparing
methods, we report the performance in their original papers
and reproduce the missing settings through their official code
repositories. For contrastive approaches [33], [20], we keep
the training epochs consistent with ours for fair comparisons.
We group previous methods into 3 categories as discussed in
Sec. II. ECL adopts RW (BC loss), FW (feature distillation),
and ME (multi-expert architecture). Note that we report the
ensemble results for all ME methods.

As illustrated in Tab. I-II, ECL outperforms previous ap-
proaches remarkably on all CIFAR-LT settings, ImageNet-
LT, and iNaturalist 2018. Compared to state-of-the-art per-
formance, ECL improves the NCL by 2.1% (CIFAR100-
LT, γ = 100), 1.1% (ImageNet-LT), and 0.9% (iNaturalist
2018) respectively. Compared to two-stage methods like MiS-
LAS [28] and GCL [38], our ECL outperforms them in an
end-to-end manner. Although we train the model in the multi-
expert framework, we can adopt a single expert for evaluation
without extra computation and memory consumption. We will
discuss the single expert performance in Sec. VI-F.

F. Further Analysis

Ablation study of ECL. We elaborately design three main
modules to compound ECL, namely the Balanced Knowledge
Transfer module (BKT), Feature Level Distillation (FLD), and
Contrastive Proxy Task (CPT). We conduct extensive ablation
experiments on CIFAR100-LT (γ = 100) to demonstrate the
contribution of each component. As Tab. III shows, our pro-
posals are complementary to the performance, and FLD con-
tributes the primary parts. As discussed in Sec. IV (observation
2), FLD promotes more robust feature learning without the
toxicity from prior label bias. Like NCL [20] and PaCo [33],
the CPT consistently improves model performance without
inference burden. In addition, the BKT module consistently
improves logit level distillation, allowing machine domain
knowledge to be transferred with unbiased weight.

Effect of expert number K. We conducted experiments
to explore the influence of expert number K. As Fig. 4
shows, the model performance improves consistently with
larger K. When K = 1, the model is equal to the baseline
with CPT without collaborative learning. When K = 2, the
performance improves significantly, which firmly manifests the
effectiveness of BKT and FLD. However, when K ≥ 3, the
single expert is difficult to get further improvement, especially
on few-shot accuracy. Hence, we set K = 3 to trade off the
computational overhead and model performance.

Hyper-parameters analysis. In the final loss (Eq. 11), we
trade off the collaborative learning with α and contrastive
learning with β. Fig. 5 is designed to search for the optimal
value on CIFAR100-LT (γ = 100). In Fig. 5a, we set β = 1

TABLE IV: Performance comparison with NCL in detail.

Dataset CIFAR100-LT ImageNet-LT

Metric Acc ↑ ECE ↓ Acc ↑ ECE ↓

NCL [20] Single 53.6 5.11 57.7 3.80
ECL 55.1 (+1.5) 2.33 (-2.78) 59.3 (+1.6) 1.96 (-1.84)

NCL [20] Ensamble 54.4 4.62 59.5 2.92
ECL 56.3 (+1.9) 1.82 (-2.80) 60.6 (+1.1) 1.33 (-1.59)

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9
(0,1) (0,2) (1,2) (0,1) (0,2) (1,2)

Fig. 7: The class-wise feature l2 distance between each expert
pair on CIFAR10-LT. The red/blue points indicate NCL and
ECL. ECL effectively reduces the differences between differ-
ent experts on the feature of the same images.

(a) w/o FLD (b) w/i FLD

Fig. 8: The loss/accuracy landscapes of ECL without (a)
or with (b) feature level distillation. All plots contain 5
landscapes with 5 randomly generated directions.

by default. When α = 0, the model is degraded to the
baseline with CPT. Top-1 Acc. increases rapidly when we add
distillation loss (α > 0). The best trade-off between distillation
and classification loss achieves at α = 0.6. In Fig. 5b, we
set α = 0.6 by default. The best performance is achieved
when β ∼ 1, which shows a balance between classification
and instance discrimination.

Feature representation quality. In Tab. III, we notice that
the feature level distillation is crucial in ECL. To delve
into its mechanism, we conduct visualization experiments on
CIFAR10-LT and CIFAR100-LT (γ = 100) in Fig. 6. Specifi-
cally, we utilize t-SNE[66] to map the K-dimensional features
into 2D distribution for visualization. Fig. 6a & 6d show
that the baseline cannot achieve satisfactory clustering results
where few-shot categories are coupled together. The poor
inter-class distance prevents further performance gains of the
classifier. Note that collaborative learning (NCL) remarkably
alleviates this issue as shown in Fig. 6b & 6e. Our ECL
further contributes to more compact intra-class distributions
and enlarges the inter-class distance (Fig. 6c & 6f), which
demonstrates that ECL provides higher quality features.

In addition, we visualize the feature distance among each
expert and summarize the average distance w.r.t. class index,
which is sorted by instances number. As Fig. 7 shows, all ex-
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CE CB [39] GCL [38] NCL [20] ECL

Fig. 9: Reliability diagrams on ImageNet-LT with 15 bins. We select ResNet50 models trained via plain CE, CB, GCL, NCL,
and our ECL. The prediction probabilities of our ECL indicate optimal expected costs in Bayesian decision scenarios.

(a) CE[39] (b) CB[39] (c) BS[15] (d) GCL[38] (e) NCL[20] (f) ECL

Fig. 10: Visualized log-confusion matrix on CIFAR100-LT (γ = 100). x-axis: ground truth. y-axis: predicted label. The deeper
color indicates larger values. ECL shows the best class accuracy and the most balanced misclassification distribution.

perts extract similar features of many-shot samples. However,
the feature representations present differentiated distribution in
few-shot samples. Our ECL alleviates this problem remarkably
via feature-level distillation, yielding its better classification
performance.

Loss/Accuracy landscapes. To validate the model robustness,
we adopt the tool in [49] to visualize the loss/accuracy
landscapes of models with/without feature level distillation.
We conduct experiments on CIFAR10-LT (γ = 100) based on
our ECL. As described in Sec. VI-B, we perturb the model
weights by a series of Gaussian noises with varying degrees.
As Fig. 8 shows, it turns out that the loss/accuracy landscapes
become much flatter if we adopt the feature level distillation
on ECL. This observation demonstrates that the distillation
operation help models to extract more robust representations
to overcome the random noise perturbation.

Model calibration. In Fig. 9, we present the reliability
diagrams with 15 bins on the ImageNet-LT. For all mod-
els in comparison, the accuracy bars are below the ideal
y = x red line, which indicates that the models are all over-
confident in their predictions. Compared to baseline CE, all
methods alleviate the overconfidence issue and promote model
calibration to some extent. Compared to NCL, ECL further
reduces ECE, which demonstrates our success in regulating
all classes. We present more detailed comparisons to the state-
of-the-art on the best single model and ensembles in Tab. IV.
Our ECL consistently outperforms the NCL in either single
and ensemble views, and the single expert of ECL achieves
comparable performance with the NCL ensemble.

Do long-tail problems get alleviated? One of the primary
goals of LTR is to improve performance in few-shot categories.
Hence, we plot the confusion matrices on CIFAR100-LT.
For better visualizations, we adopt logarithmic operations for
all matrix values. In Fig. 10, the baseline (10a) prefers to

train a trivial predictor, which simplifies images as many-shot
labels to minimize the error rate. Several recent methods (10b-
10e) alleviate such issues to some extent. Compared to them,
our proposal (10f) shows the best accuracy (diagonal) and a
more balanced misclassification distribution (non-diagonal). It
firmly demonstrates our superiority in erasing the bias in LTR
and our success in regularizing the few-shot classes.

VII. CONCLUSION

This paper systematically analyzes the multi-expert frame-
work in the long tail visual recognition, which trains several
experts collaboratively to overcome the model preference
for the majority and the high uncertainty on the minority.
We point out that there is imbalanced knowledge transfer
among experts’ distillation, which leads to the inconspicuous
improvement of collaborative learning on tail performance. A
balanced distillation loss is proposed to improve the efficiency
of collaborative learning by comparing two classifiers’ predic-
tions, which are supervised by different signals. Furthermore,
we claim that distillation at the feature level will greatly
improve the feature quality and model performance. To learn
representations more thoroughly, we integrate a contrastive
proxy task and finally propose an effective collaborative
learning framework, which helps the model extract robust
features and learn meticulous distinguishing ability. We con-
duct both quantitative and qualitative experiments on four
standard datasets to verify the superiority and effectiveness of
ECL. Extensive experiments and visualizations demonstrate
that ECL achieves state-of-the-art performance with better
feature representations.
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