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ABSTRACT

Spatiotemporal predictive learning (ST-PL) is a hotspot with
numerous applications, such as object movement and mete-
orological prediction. It aims at predicting the subsequent
frames via observed sequences. However, inherent uncer-
tainty among consecutive frames exacerbates the difficulty
in long-term prediction. To tackle the increasing ambigu-
ity during forecasting, we design CMS-LSTM to focus on
context correlations and multi-scale spatiotemporal flow with
details on fine-grained locals, containing two elaborate de-
signed blocks: Context Embedding (CE) and Spatiotemporal
Expression (SE) blocks. CE is designed for abundant context
interactions, while SE focuses on multi-scale spatiotemporal
expression in hidden states. The newly introduced blocks also
facilitate other spatiotemporal models (e.g., PredRNN, SA-
ConvLSTM) to produce representative implicit features for
ST-PL and improve prediction quality. Qualitative and quanti-
tative experiments demonstrate the effectiveness and flexibil-
ity of our proposed method. With fewer params, CMS-LSTM
outperforms state-of-the-art methods in numbers of metrics
on two representative benchmarks and scenarios. Code is
available at https://github.com/czh-98/CMS-LSTM.

Index Terms— Spatiotemporal predictive learning, con-
text embedding, multi-scale attention, fine-grained details

1. INTRODUCTION

Spatio-Temporal Predictive Learning (ST-PL) is one
of the hotspots in predictive learning with broad research
prospects in computer vision. The core task and challenge
are predicting future sequences based on limited observed
frames, containing a large amount of visual information and
profound dynamic changes. Recent years have seen signifi-
cant progress in ST-PL. Numerous researchers have carried
out in-depth research and proposed a series of RNNs [1]
(especially LSTMs) based models, from the original Con-
vLSTM [2, 3] used for precipitation nowcasting to the im-
proved approaches, such as PredRNN [4, 5], PredRNN++ [6],
MIM [7], E3D-LSTM [8], SA-ConvLSTM [9]. These meth-
ods have achieved remarkable results in ST-PL.

LSTM based models are mainstream in ST-PL. However,
the input and context of previous models are solely correlated
by CNN layers and channel-wise addition operation. Hence,
with the increase of models’ depth, correlations between the
current input and upper context will decline as information
flows through layers. To improve the correlation and cap-
ture important parts of input and context, we design Context
Embedding (CE) block to re-weight input and context states
in an iteratively interacted mode to reflect the spatiotemporal
details. CE block utilizes lightweight CNN layers to itera-
tively focus on important parts for subsequent prediction to
enhance the correlations and capture the variation trend.

Spatiotemporal sequences contain complex semantic fea-
tures, whereas the certainty of frames is exceptionally fuzzy.
Previous work predicts increasingly blur details because they
do not balance focusing on the changed regions and weaken-
ing the expression on unchanged parts. Instead, they merely
concentrate on global spatiotemporal flows of given frames
in hidden states, resulting in more extra params and igno-
rance of fine-grained variations. We creatively divide latent
states into multi-scales to capture details of specific regions in
parallel by proposing Multi-Scale Spatiotemporal Expression
(SE) block. SE block captures fine-grained details based on
the self-attention mechanism, which improves the dominant
changed regions well expressed and simultaneously weakens
the negligible parts with lower expression.

We integrate CE and SE blocks by proposing Context Em-
bedding and Multi-Scale Spatiotemporal Expression LSTM
(CMS-LSTM), an extension structure of ConvLSTM to im-
prove prediction quality especially the details. CMS-LSTM
overcomes deficiencies of the isolated relationship of context
and input and pays more attention to multi-scale spatiotem-
poral flows. The main contributions are as follows:
• We design CE block and SE block to capture fine-grained

details to promote prediction quality. CE block maintains
consistency and extracts further correlations between the
current input and upper context. SE block facilitates multi-
scale dominant spatiotemporal flows’ expression and weak-
ens the negligible parts simultaneously.

• To the best of our knowledge, the proposed CMS-LSTM
is the first to innovatively integrate context interaction
enhancement and multi-scale spatiotemporal expression
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mechanism for detailed prediction. It achieves significant
improvement and state-of-the-art results in numbers of met-
rics on two representative benchmarks and scenarios.

• Qualitative and quantitative experiments have demonstrated
the importance of context interactions and multi-scale spa-
tiotemporal flows in ST-PL. The proposed CE block and SE
block have the portability to transplant in other models.

2. METHODS

2.1. Overview of CMS-LSTM

Considering the limitation of ConvLSTM, the core goals
of CMS-LSTM are to maintain the spatiotemporal consis-
tency and correlations among frames in LSTM layers, facil-
itate multi-scale dominant spatiotemporal flows’ expression
and weaken the negligible ones simultaneously. In specific,
CMS-LSTM is constructed by taking both considerations of
context interactions and multi-scale spatiotemporal flows.

Fig. 1: Architecture of CMS-LSTM. Ht−1 and Ct−1 repre-
sent output state and memory state of t− 1 time respectively,
Xt represents the t time input. Ĥt and Ĉt are the output of
CMS-LSTM, i.e., the output state and memory state of t time.

The architecture of proposed CMS-LSTM is illustrated in
Fig. 1. Formally, the calculation process of CMS-LSTM can
be expressed as follows:

X̂t, Ĥt−1 = CE(· · ·CE(Xt, Ht−1))

gt = tanh(Wxg ? X̂t +Whg ? Ĥt−1 + bg)

it = σ(Wxi ? X̂t +Whi ? Ĥt−1 + bi)

ft = σ(Wxf ? X̂t +Whf ? Ĥt−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ gt
ot = σ(Wxo ? X̂t +Who ? Ĥt−1 + bo)

Ht = ot ◦ tanh(Ct)

Ĥt, Ĉt = SE(Ht, Ct)

(1)

In Eq. 1. X̂t and Ĥt−1 represent the output of n stacked CE
blocks with intensive context interactions. Then, Ht and Ct

are obtained through LSTM gate operations, which merely
contain limited global spatiotemporal flows at present. We
thus adopt 3-scale SE block to extract multi-scale features for
further spatiotemporal flows among neighbors, to obtain the
final output Ĥt and Ĉt of CMS-LSTM. The structure of CE
and SE blocks will be introduced later.

2.2. CE Block

Rethinking the process of ConvLSTM [2], the input state
Xt and previous output stateHt−1 only interact separately by
a CNN layer and addition operation. Limited interaction be-
tween the two states is crucial for the model’s information loss
and blurry prediction results. When the two states are com-
pletely independently entering into subsequent LSTM parts,
correlations between the current input and upper context is
bound to disappear as models become increasingly complex.

Fig. 2: The pipeline of proposed CE block, where Ht−1, Xt

are the previous state and current input, respectively. H and
X are 5 × 5 convolution layers to extract features of Ht and
X̂t, respectively. Ĥt−1 and X̂t are the output of CE block,
representing the previous state and current input after context
embedding, respectively.

On the top of aforementioned, the current ConvLSTM and
its extensions are incapable of re-weighting or capturing the
important parts for the next timestamp. Therefore, we design
CE block that contains additional operations to make persis-
tent correlations of Xt and Ht−1, to minimize the correlation
decrease passing through LSTM layers and achieve a last-
ing relationship for better predicting performance. To achieve
this, we utilize spatiotemporal features to generate a context
weight map to enforce important information well captured,
i.e., to concentrate on the changed parts while simultaneously
weakening the fixed parts. Specifically, CE block (see Fig. 2)
consists of the following steps:

Step1. To capture the important parts of current input that
are helpful for long-term prediction, we generate a weight
map of upper context via a 5 × 5 kernel CNN layer to cap-
ture the context features, which indicates the potential move-
ment trend in the following time stamp. Then, we adopt Sig-
moid function to normalize the weight map into (0, 1), and



Fig. 3: The pipeline of proposed SE block, with sub-module in the left part named Multi-Scale Attention Module (MSAM),
where Ht and Ct represent the output of original ConvLSTM, and 5× 5 convolution layers are used to extract features, Ĥt and
Ĉt represent the output state and memory state after multi-scale spatiotemporal flows’ extraction.

re-weight the input feature Xt by the Hadamard product to
highlight the important part of the input state. Finally, we
multiply the weight map by a constant scale factor s to avoid
getting increasingly smaller as CE blocks stacked.

Step2. To enforce the context feature well absorb in the
changing trend of current input frames, i.e., consider the cur-
rent motion and weaken the unchanged parts with lower ex-
pression. We update Ht−1 by multiplying an input-related
weight map to extract the subsequent motion concentration
for subsequent prediction by the Hadamard product. The
weight map has the same generation mode in Step 1, i.e., cap-
ture the local context motion features by a CNN layer and ac-
tivation function with scale factor. Then, the updated context
state Ĥt−1 and input state X̂t is obtained.

Formally, context correlations are extracted by the in-
teraction mode as Eq. 2 in the proposed CE block, where
WH ,WX are CNN and σ represents Sigmoid operation.

X̂t = s× σ(WH ? Ht−1 + bH) ◦Xt

Ĥt−1 = s× σ(WX ? X̂t + bX) ◦Ht−1
(2)

To achieve richer interactions and minimize the extra params,
we use stacked weight-shared CE blocks to extract abundant
correlation further.

2.3. SE Block

We find it’s common that the prediction results of models
become increasingly blur especially in the edges and details.
The reason is that previous LSTM-based approaches mainly
concentrate on modeling global spatiotemporal features and
flows, regardless of multi-scale neighbor features among se-
quences. We emphasize the insufficiency of previous work in
multi-scale spatiotemporal flow extractions and construct SE
block for maximizing extract multi-scale implicit spatiotem-
poral flows to overcome previous weakness.

Considering those aforementioned, we construct SE block
to enable the output state Ht and memory state Ct to con-
tain abundant fine-grained spatiotemporal information. The

pipeline of SE block is illustrated in Fig. 3, which can be sum-
marized as the following two steps.

Step1. Multi-Scale Spatiotemporal Features Expres-
sion To extract fine-grained spatiotemporal features in latent
states, we adopt self-attention mechanism to obtain local fea-
tures of specific scales. To avoid additional computation load
and params on two hidden states, we stack the spatiotemporal
states Ht, Ct ∈ RC×H×W into Z ∈ RC×H×W×2 to improve
the parallel efficiency.

To capture fine-grained feature in specific scale, we divide
Z into n multi-scale groups {Z1, · · · , Zn} according to seg-
mentation rules R = {R1, · · · , Rn}, then each Zi, i ∈ [1, n]
is stacked in C channel to compose {z1, · · · , zn}. For each
zi, i ∈ [1, n], we use standard self-attention module to reflect
the importance of representing spatiotemporal characteristics
of different regions, and denote as:

Zi = DIVIDE
Ri∈R

([Ht, Ct]) i ∈ [1, n]

ẑi = BAM(STACK
C

(Zi)) i ∈ [1, n]
(3)

Where BAM is a standard self-attention operation, which uses
1×1 CNN layers to map zi intoK,Q, V and obtains updated
ẑi as follows:

BAM(zi) , Softmax(QT ×K)× V + zi (4)

After that, the multi-scale latent features are restored in H
and W channels to recover the original shape, then we con-
cat these multi-scale features in C channel to composing
Ẑ ∈ RnC×H×2W . Ultimately, feature maps AH , AC ∈
RnC×H×W are calculated by 5 × 5 CNN layer taking Ẑ ∈
RnC×H×W×2 as input and separated in the last channel.

Ẑ = CONCAT
C

(RESTORE
Ri∈R

(ẑi)) i ∈ [1, n]

[AH , AC ] = SEPARATE(WZ ? Ẑ + bz)
(5)

We successfully obtain the fine-grained features AH and AC .
They consist of abundant spatiotemporal correlations and de-
tails of the previous two states.



Step2. Spatiotemporal Implicit States Update We uti-
lize AH , AC to update latent states with abundant details.
Specifically, we stack the spatiotemporal related latent fea-
ture into channel dim and follow by a 5× 5 CNN layers, then
split into 3 parts: Zi, Zg, and Zo, respectively.

it = σ(WAi ? [AH , AC ] +Whi ? ZH + bi)

gt = tanh(WAg ? [AH , AC ] +Whg ? ZH + bg)

ot = σ(WAo ? [AH , AC ] +Who ? ZH + bo)

(6)

Then, the memory state Ĉt and output state Ĥt integrate the
detailed multi-scale features and further updated as follows:

Ĉt = (1− it) ◦ Ct + it ◦ gt
Ĥt = ot ◦ Ĉt

(7)

With the construction of SE block, memory state and out-
put state focus more on the detailed sequence changes in the
long-term prediction and can effectively counter the gradually
fuzzy prediction results.

3. EXPERIMENTS

3.1. Implementation Details

We use the same 4-layer LSTM architecture with 64 hid-
den states for fair comparisons. Setting mini-batch to 8 and
initial learning rate to 0.001, scheduled sampling [10] and
layer normalization [11] are simultaneously adopted during
training. We use L1 +L2 loss with AdamW [12] optimizer to
train the model, We set scale factor of CE as s = 2.

3.2. Datasets

Moving MNIST Moving MNIST [13] is a common
benchmark in ST-PL, depicting 2 digits’ movement with con-
stant velocity. Each data contains 64 × 64 × 1 consecutive
frames with 10 for input and 10 for prediction, 10, 000 ran-
domly generate sequences for training and 10, 000 fixed se-
quences for testing.

Typhoon Typhoon dataset is distributed by CEReS [14].
We normalize the radar observation data into [0, 1], resize the
image to 64× 64× 1. Each frame represents meteorological
observation in the past 1 hour. We use the given 8-hour obser-
vation data to predict the next 4 hours, with 1809 sequences
for training and 603 sequences for testing.

3.3. Comparisons with SOTA Methods

We compare the proposed model with previous SOTA
methods quantitatively and qualitatively to demonstrate our
method’s advantages and effectiveness.

Results on Moving MNIST We set 80, 000 iterations
consistent with [4, 9] and 400, 000 iterations for better perfor-
mance. Quantitative and qualitative comparisons are shown

Fig. 4: Qualitative comparisons of previous models on Mov-
ing MNIST test set at 80, 000 iterations. The output frames
are shown at one-frame intervals. We magnify the local of
prediction results for detailed comparisons at the last frame.
Table 1: Quantitative comparisons of previous SOTA models
on Moving MNIST test set. All models predict 10 frames by
observing 10 previous frames. We also train 400, 000 itera-
tions (CMS-LSTM*) for higher performance.

Models #Params PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
DDPAE [15] - 21.170 0.922 38.9 90.7
CrevNet [16] - - 0.928 38.5 -
PhyDNet [17] - 23.120 0.947 24.4 70.3
PDE-Driven [18] - 21.760 0.909 - -
PredRNN [4] 13.799 M 19.603 0.867 56.8 126.1
PredRNN++ [6] 13.237 M 20.239 0.898 46.5 106.8
MIM* [7] 27.971 M 20.678 0.910 44.2 101.1
E3D-LSTM [8] 38.696 M 20.590 0.910 41.7 87.2
SA-ConvLSTM [9] 10.471 M 20.500 0.913 43.9 94.7
CMS-LSTM 7.968 M 21.955 0.931 33.6 73.1
CMS-LSTM* 7.968 M 23.682 0.949 24.3 58.1

in Tab. 1 and Fig. 4, respectively. PSNR, SSIM, MSE, and
MAE are used for quantitative comparisons. The performance
improves as the SSIM and PSNR increase and the MSE and
MAE decrease. Results in Tab. 1 demonstrate the superiority
of our method on Moving MNIST dataset in all above met-
rics, improving 14.5% and 3.9% on PSNR and SSIM, and
reducing 41.7% and 33.4% on MSE and MAE respectively
compared with SA-ConvLSTM [9].

Results in Fig. 4 show that CMS-LSTM has better capa-
bility to capture variations over digits, especially deals with
the trajectory of overlap digits and maintains the clarity over
time. In contrast, predicted frames of other methods appear
blurry in the digits and fail to deal with overlap digits.

Results on Typhoon We train the proposed models for
100, 000 iterations and make fair comparisons with previous
methods. PSNR, SSIM, MSE, and MAE are adopted to eval-
uate these models’ performance qualitatively and quantita-
tively, corresponding to Fig. 5 and Tab. 2.

The proposed method outperforms existing techniques
quantitatively in Tab. 2 and qualitatively in Fig. 5. CMS-
LSTM is the only model that performs well in the detail tex-
ture of frames, i.e., it can preserve and predict the potential
trend of meteorological information.

Results in Tab. 2 demonstrate the superiority of the pro-



Fig. 5: Qualitative comparisons of previous SOTA models on Typhoon test set. The output frames are shown at one-frame
intervals. We frame the local of predicted results for additional detailed comparisons at the last frame.

Table 2: Quantitative comparisons of previous SOTA mod-
els on Typhoon test set. All models predict the next 4 frames
(atmosphere trends for the next 4 hours) via 8 observed mete-
orological data. We also use 7×7 convolution layers (denoted
as CMS-LSTM#) for higher performance.

Models PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
ConvLSTM [2] 26.353 0.851 10.43 119.6
PredRNN [4] 27.637 0.887 7.71 107.3
PredRNN++ [6] 28.287 0.891 6.72 114.5
MIM* [7] 26.721 0.893 9.14 132.2
SA-ConvLSTM [9] 28.456 0.898 7.07 94.2
CMS-LSTM 28.891 0.907 6.24 86.4
CMS-LSTM# 30.207 0.921 5.21 76.0

posed method, with better spatiotemporal expression and pre-
diction results, which further proves the tremendous necessity
of interactions among latent states in ST-PL.

4. ABLATION STUDIES

4.1. Weight Map Visualization

To illustrate the effectiveness of the proposed methods,
we visualized the weight map calculated by CE and SE block
in the last LSTM layer and randomly choose some examples
from the test set of Moving MNIST as illustrated in Fig. 6.

The weight map shows the important part of among
frames. CE block enables important parts closely related
to the context (e.g., moving trends) and input frames to be
well captured, revealing the rough candidate regions as shown
warmer color and keeping the unchanged parts with a lower
weight. The output frames are closely related to the weight
map where the important part is captured by SE block. SE
block captures fine-grained details for prediction, which can
alleviate the fuzzy texture in long-term prediction, especially
in the challenge overlap cases. CMS-LSTM still accurately
capture important parts and make satisfactory results.

As shown in Fig. 6, CE block is effective in capturing a
potential changed part, the larger weight that urges models to
focus on these regions and ignore the fixed unchanged part,
to avoid the wrong prediction results. The context embed-
ding mode effectively predicts the potential trend of current

Fig. 6: Visualization of the proposed blocks on Moving
MNIST test set of the last LSTM layer, where the warm col-
ors indicate higher weights. The proposed methods enable
capturing important regions for better prediction.
input and upper context and effectively weakens the expres-
sion of irrelevant parts in the process of sequences. In SE
block, the updated latent states are more focused on impor-
tant parts, which helps the prediction results of the model to
achieve higher prediction quality.

4.2. Ablation Study of CMS-LSTM

We conduct ablation studies to verify the effectiveness of
CE and SE block. Experiments below set 80, 000 (100, 000)
iterations in Moving MNIST (Typhoon) for training.

We verify the necessity of context interactions and multi-
scale spatiotemporal flows by comparing CMS-LSTM re-
moving CE and SE, respectively, and then using different
scales to illustrate the necessity of the multi-scale spatiotem-
poral expression. The entire CMS-LSTM achieves the best
performance compared with the original ConvLSTM. Com-
paring models with and without CE block demonstrates the
necessity of context interactions. Moreover, experiments in
multi-scale further show the importance of spatiotemporal
flow extractions in different scales.

Besides, to testify the portability of CE and SE, we trans-
plant them into previous SOTA methods. Specifically, we



Table 3: Ablation studies on Moving MNIST and Typhoon datasets. Models with and without CE block or SE block are tested
sequentially in different backbones, as well as SE block with different scales in ConvLSTM.

Models Moving MNIST Typhoon
PSNR ↑ ∆ SSIM ↑ ∆ MSE ↓ ∆ MAE ↓ ∆ PSNR ↑ ∆ SSIM ↑ ∆ MSE ↓ ∆ MAE ↓ ∆

ConvLSTM 18.523 - 0.877 - 70.4 - 115.9 - 26.353 - 0.851 - 10.4 - 119.6 -
w CE, w/o SE 21.189 +2.666 0.918 +0.041 39.1 -31.3 82.8 -33.1 29.022 +2.669 0.906 +0.055 6.32 -4.08 87.0 -32.6
w CE, w 1-scale SE 21.708 +3.185 0.927 +0.050 35.1 -35.3 76.3 -39.6 28.785 +2.432 0.903 +0.052 6.58 -3.82 89.3 -30.3
w CE, w 2-scale SE 21.858 +3.335 0.929 +0.052 33.8 -36.6 74.3 -41.6 28.650 +2.297 0.901 +0.050 6.75 -3.65 90.5 -29.1
w/o CE, w SE 21.712 +3.189 0.927 +0.050 34.8 -35.6 76.2 -39.7 28.555 +2.202 0.899 +0.048 6.86 -3.54 92.1 -27.5
w CE, w SE 21.955 +3.432 0.931 +0.054 33.6 -36.8 73.1 -42.8 28.891 +2.538 0.907 +0.056 6.24 -4.16 86.4 -33.2
PredRNN 19.603 - 0.867 - 56.8 - 126.1 - 27.637 - 0.887 - 7.71 - 107.3 -
w CE, w/o SE 22.356 +2.753 0.924 +0.057 30.7 -26.1 82.7 -43.4 28.061 +0.424 0.896 +0.009 7.06 -0.65 102.7 -4.60
w/o CE, w SE 22.761 +3.158 0.931 +0.064 28.7 -28.1 76.9 -49.2 28.516 +0.879 0.900 +0.013 6.51 -1.20 90.3 -17.0
w CE, w SE 23.210 +3.607 0.935 +0.068 26.3 -30.5 74.2 -51.9 28.864 +1.227 0.907 +0.020 6.03 -1.68 94.7 -12.6
SA-ConvLSTM 20.500 - 0.913 - 43.9 - 94.7 - 28.456 - 0.898 - 7.07 - 94.2 -
w CE, w/o SE 22.591 +2.091 0.929 +0.016 27.3 -16.6 79.0 -15.7 28.628 +0.172 0.900 +0.002 6.88 -0.19 89.3 -4.90
w/o CE, w SE 21.700 +1.200 0.928 +0.015 34.8 -9.10 75.7 -19.0 28.690 +0.234 0.903 +0.005 6.62 -0.45 89.4 -4.80
w CE, w SE 21.659 +1.159 0.927 +0.014 34.7 -9.20 76.4 -18.3 29.505 +1.049 0.913 +0.015 5.82 -1.25 82.5 -11.7

compare PredRNN [4] and SA-ConvLSTM [9] with/without
CE block and SE block in the same experiment settings for
quantitative comparisons on Moving MNIST and Typhoon
dataset, results shown in Tab. 3. Tab. 3 further verifies the
portability of the proposed blocks. With the transplant of
them, previous models’ performances do get significantly im-
proved, indicating the ability of our methods to be trans-
planted in other spatiotemporal predictive models.

5. CONCLUSIONS

This paper creatively proposes effective modules named
CE block and SE block focused on context interactions
and multi-scale spatiotemporal expression, and then con-
structs CMS-LSTM. Qualitative and quantitative experiments
demonstrate the superiority of our method dealing with un-
certainty and overlap in sequences, showing state-of-the-art
performance on representative datasets.

Ablation studies further verify the effectiveness and flex-
ibility of our method. CE block can maintain the spatiotem-
poral consistency among long sequences, and SE block facil-
itates multi-scale dominant spatiotemporal flows’ expression
and simultaneously weakens the negligible ones. Moreover,
they can transplant to other spatiotemporal predictive related
models to improve the performance markedly.
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