
Backscatter-Assisted Computation Offloading for
Energy Harvesting IoT Devices via Policy-based

Deep Reinforcement Learning
Yutong Xie∗†, Zhengzhuo Xu‡, Yuxing Zhong‡, Jing Xu‡, Shimin Gong§, and Yi Wang¶‖
∗Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

†University of Chinese Academy of Sciences
‡School of Electronic Information and Communications, Huazhong University of Science and Technology, China

§School of Intelligent Systems Engineering, Sun Yat-sen University, China
¶SUSTech Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China

‖Pengcheng Laboratory, Shenzhen, China

Abstract—Wireless Internet of Things (IoT) devices can be
deployed for data acquisition and decision making, e.g., the
wearable sensors used for healthcare monitoring. Due to limited
computation capability, the low-power IoT devices can optionally
offload power-consuming computation to a nearby computing
server. To balance power consumption in data offloading and
computation, we propose a novel hybrid data offloading scheme
that allows each device to offload data via either the conventional
RF communications or low-power backscatter communications.
Such a flexibility makes it more complicated to optimize the
offloading strategy with uncertain workload and energy supply
at each device. As such, we propose the deep reinforcement
learning (DRL) to learn the optimal offloading policy from
past experience. In particular, we rely on the policy-based DRL
approach for continuous control problems in the actor-critic
framework. By interacting with the network environment, we can
optimize each user’s energy harvesting time and the workload
allocation among different offloading schemes. The numerical
results show that the proposed DRL approach can achieve much
higher reward and learning speed compared to the conventional
deep Q-network method.

Index Terms—Deep reinforcement learning, DDPG, DQN,
mobile data offloading, wireless backscatter.

I. INTRODUCTION

Mobile edge computing (MEC) has emerged as a promis-
ing technique by providing the IoT devices with cloud-like
computation capability at the easy-to-access and resource-rich
MEC servers [1]. The edge devices are allowed to offload
sensed data and computation workload (e.g., compressing,
encryption, and outlier detection) to the MEC servers. Then the
MEC servers return the processed data or results for fulfilling
the service requests at the edge devices. On one hand, MEC
offloading can support computation-intensive workload at the
low-power edge devices. It reduces the edge devices’ power
consumption on computation. However, on the other hand,
data offloading is inherently power-consuming by using the

The authors would like to thank the anonymous reviewers for their valuable
comments. This work is partially supported by an NSFC project grant (ref.
no. 61872420), and the project of “PCL Future Regional Network Facilities
for Large-scale Experiments and Applications (ref. no. PCL2018KP001)”
Corresponding author: Shimin Gong.

conventional RF communications. The power consumption of
RF radios is typically high due to the emission of RF carrier
signals [2]. Hence, data offloading based on RF communica-
tions may not be affordable by low-power IoT devices and
hence prevents them from using the MEC servers. As both
offloading and computation are power consuming, the user
devices have to balance its power consumptions depending on
the channel conditions, energy status, and the workloads.

Recently, wireless backscatter is proposed as novel commu-
nication technology with extremely low power consumption.
The backscatter radios operate in passive mode by modulating
and reflecting the incident RF signal [3]. Without using active
components, the passive radios are featured with low power
consumption and low data rate [4]. Whereas the active radios
can transmit in a higher data rate by adapting the transmit
power against the channel fading. This motivates us to design
a hybrid MEC offloading scheme that allows each IoT device
to switch the offloading scheme between the passive and active
modes, e.g., [5]. The critical design problem is to optimize
the energy harvesting time for each IoT device, as well as
the transmission scheduling and workload allocation strategies
among local computing, active, and passive offloading actions.

However, the joint optimization of offloading strategy be-
comes very challenging due to close couplings among different
users and the uncertain network information, e.g., the time-
varying channel conditions and random arrival of workload.
To deal with such complexities, the model-free DRL-based
framework has been proposed as a promising solution to learn
the optimal offloading strategy based on past experience [6].
The authors in [7] considered the simple offloading scheme,
in which the end user can access either the cellular network or
WLAN with different costs. To minimize the user’s cost, the
deep Q-network (DQN) method is introduced to optimize the
network selection based on the user’s location and remaining
data size. Considering limited capacity at the MEC server,
DQN is also used in [8] to learn the optimal resource allocation
and the offloading decision, based on the cost of all users and
the available capacity of the MEC server.

However, the above-mentioned works for MEC offloading

2019 IEEE/CIC International Conference on Communications Workshops in China

65Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

generally reformulate a discrete control problem by properly
quantizing the decision variables into a finite action space.
This simplifies the design of learning policy by the value-
based DQN framework and its variants, e.g., DDQN and
dueling structure [6]. In this paper, we propose the policy-
based deep deterministic policy gradient (DDPG) approach
that directly searches for the optimal time and workload allo-
cation strategies in continuous domain. Based on the channel
conditions and energy status, each user device firstly optimizes
its energy harvesting time to accumulate RF power. Given the
power budget, the computation workload will be optimally
divided among local computing, active, and passive offloading
schemes to minimize the workload outage. Our numerical
results demonstrate that the proposed DDPG approach for con-
tinuous control can achieve much higher reward and learning
speed compared to the value-based DQN algorithm.

II. SYSTEM MODEL

We consider a wireless sensor network with one hybrid
access point (HAP) and N user devices that can sense and pro-
cess data independently. The user devices can be envisioned as
wearable devices for healthcare monitoring. This information
can be sampled at different rate to save energy and maintain a
certain accuracy requirement. The sensed information can be
analyzed locally or remotely by machine learning algorithms
for classification, prediction, and decision making, which are
usually computation-intensive. To assist their data processing,
the user devices can offload their sensed data and workload to
an nearby MEC server, co-located with the HAP. The MEC
server will return the processed data to the user devices after
the completion of workload. The system model is illustrated
in Fig. 1 and a similar model has been studied in [9].

Let N = {1, 2, ..., N} denote the set of all edge nodes and
Si denote the i-th edge node for i ∈ N . Each node is equipped
with single antenna capable of harvesting energy from the
HAP with constant transmit power. The complex uplink and
downlink channels between HAP and node Si are denoted by
hi ∈ C and gi ∈ C, respectively. Each Si is allocated a time
slot ti for its data offloading and capable of energy harvesting
in the same time slot. The workload of each edge node Si is
given by Li, which is defined as the number of data bits to
be processed either locally or remotely at the MEC server. We
assume that the workload of each device is generated at the
beginning of each time slot, and it has to be processed before
the end of data frame.

A. Hybrid MEC Offloading

The data offloading from each user to the MEC server can
be performed in either passive backscatter communications
or active RF communications. In passive mode, the HAP’s
beamforming provides the carrier signal for the edge node to
perform backscatter communications. A part of the incident RF
signal is reflected back and the other part is still captured by
the antenna and converted to energy. We assume that each user
has only one antenna and thus it can only transmit in one radio
mode or harvest energy from the HAP. The switch between
passive and active mode can be achieved by tuning the load

𝑆3

𝑆1

𝑆2

𝑆𝑖

HAP/MEC server

…

Energy/Carrier signal

Active RF communication

Backscatter communication

𝑔𝑖

ℎ𝑖

(a) Wireless power hybrid data offloading in MEC

𝑡1 𝑡2

…

𝑡𝑁…

𝑡𝑝,1𝑡𝑎,1 𝑡𝑎,2 𝑡𝑝,2 𝑡𝑎,𝑁 𝑡𝑝,𝑁

𝑡𝑙,1 𝑡𝑙,2 𝑡𝑙,𝑁

𝑡ℎ,1 𝑡ℎ,2 𝑡ℎ,𝑁

Passive offloading

Active offloading Local computing

Idle

Energy harvesting

…

(b) Time allocation for MEC

Fig. 1: Hybrid MEC offloading for energy harvesting IoT devices.

impedance, e.g., [10]. As such, we further divide each time slot
tj into three sub-slots, as shown in Fig. 1(b). The first sub-slot
th,j is used for the user device to harvest RF power and then
sustain local computing and data offloading. The following two
sub-slots ta,j and tp,j are used for data offloading in active
and passive modes, respectively. Besides data offloading, the
user device can also perform local computation simultaneously
with the data offloading [1], as shown in Fig. 1(b).

B. Workload Allocation

The workload generated in each time slot can be allocated
among local computation, active and passive offloading. Note
that different computation schemes have different processing
capabilities and power consumption. Hence, the design of
MEC offloading scheme aims to optimally divide the workload
into three schemes, according to the dynamics in workload,
channel conditions, and the energy supply of each edge device.

1) Active Offloading Scheme: Let pa,i denote the transmit
power of user Si in active offloading. The received signal
at HAP is y =

√
pa,ihis(t) + νd, where s(t) represents the

information with unit power and νd ∼ CN (0, σ2) is the noise
at the HAP. Then, the data rate in the active mode is expressed
by

ra,i = B log2
(
1 + pa,i|hi|2/σ2

)
, (1)

where B denotes the bandwidth of active data transmission.
The relationship between pa,i and ra,i is denoted by:

pa,i = β(ra,i) ,
(
2ra,i/B − 1

)
σ2/|hi|2. (2)

Hence, the total power consumption in active mode is given
by β̃ (ra,i) , β (ra,i)+pc,i, where pc,i represents the constant
power to excite the circuit.

66Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

2) Passive Offloading Scheme: For passive offloading, the
backscattered signal at HAP can be expressed as y(n, i) =
αgib(n)hix(n), where x(n) denotes the carrier signal emitted
by the HAP and b(n) ∈ {0, 1} is the binary backscatter infor-
mation [11]. Here α denotes the reflection coefficient of the
backscatter transmitter, which is determined by the antenna’s
load impedance. Assuming perfect interference cancelation,
the direct transmission from the HAP can be subtracted from
the received signal. Hence, similar to that in [12], we can
simply approximate the data rate in the passive mode as
rp,i = B log(1 + |αgihi|2/σ2). Typically the backscatter rate
rp,i is less than that of the active RF communications. How-
ever, power consumption for backscatter communications can
be neglectable and sustainable by wireless energy harvesting.
This implies that the edge device prefers to use high rate
RF communications when energy is sufficient, and turns to
backscatter communications if energy becomes insufficient.

3) Local Computing: The edge device can also perform
local computing in parallel with data offloading. We allow
different edge devices to have different computation capability.
Let fi denote the processor’s computing speed (CPU cycles
per second) of the i-th user device. The power consumption
per CPU cycle can be characterized by kf2i [13], where
the constant coefficient k denotes the energy efficiency of
computation. Let 0 ≤ tl,i ≤ 1 represent the time allocation for
local computing. Then, the total energy consumption in local
computing can be modeled by el,i = kf3i tl,i. Let φ > 0 denote
the number of cycles required to process one unit workload.
Hence, the number of information bits that can be processed
locally is given by `l,i = rl,itl,i, where rl,i = fi/φ can be
viewed as the data processing rate in local computing. We
assume that the parameters fi and φ are fixed for different user
devices. Thus the energy consumption el,i in local computing
only relates to the time and workload allocation (tl,i, `l,i).

C. Price for MEC Offloading

By offloading the workload to MEC server, the edge n-
odes consume the MEC server’s channel resource to receive
workload and return results, as well as the CPU resource to
execute computation tasks. The MEC server also charges a
price for each user using its MEC offloading service. Let
`o,i = `a,i + `p,i represents the total workload offloaded to
the MEC server in both active and passive mode. The price
for MEC offloading service contains two parts. The first part
accounts for the use of the channel resource, which is pro-
portional to the workload offloading rate. A higher offloading
rate implies that more channel resource (e.g., bandwidth and
energy consumption) will be allocated to receive the workload.
The other part depends on the total number of workload,
denoting the cost of computing resource, e.g., CPU cycles and
storage. In particular, the MEC server sets its price as follows:

po,i =
µo`o,i

ta,i + tp,i
+ ρo`o,i,

where µo denotes the unit channel price [14] and ρo represents
the unit computing price. The unit prices µo and ρo can be
adjusted properly to ensure that all offloaded workload can be
processed within its resource limitation.

III. POLICY-BASED DRL APPROACH FOR HYBRID MEC
OFFLOADING

Individual user can make offloading decisions based on its
local observations. In the following, we focus on a single
user and aim to maximize its long-term performance. In
the i-th time slot, let ti , [th,i, ta,i, tp,i, tl,i]

T denote the
the time allocation among energy harvesting and different
computing schemes. Let `i , [`l,i, `a,i, `p,i]

T denote the work-
load allocation among local computing, active, and passive
offloading, respectively. We aim to optimize the user’s overall
performance by optimizing the time and workload allocation
strategies (ti, `i) in each time slot. In particular, we define the
performance metric as follows:

Ri(ti, `i) ,
Li

β̃ (ra,i) ta,i + kf3i tl,i
− wpo,i. (3)

Here the constant weight w represents the user’s preference
for using MEC offloading service. The first term in (3)
represents the energy efficiency in MEC offloading and local
computing, defined as the total workload over the total energy
consumption. The second term is the cost for using MEC
offloading service.

A. Joint Time and Workload Allocation

The edge user’s workload in each time slot has to be
completed before a fixed delay bound. Assuming that each
time slot has unit length, we simply require th,i+ta,i+tp,i ≤ 1.
The workload allocation in three schemes have to fulfill the
user’s service requirement:

`a,i + `p,i + `l,i ≥ Li, (4)

where we have `a,i = ta,ira,i and `p,i = tp,irp,i. Workload
outage may happen if the workload constraint (4) does not
hold, which implies that the workload generated in the i-
th time slot cannot be successfully processed within the
delay bound. As the computation capability varies in different
schemes, this requires an optimal allocation of the workload
to minimize the workload outage probability.

Different computation schemes also vary in their energy
consumptions. In particular, local computation consumes pow-
er in CPU cycles. The active offloading consumes high power
in RF communications, while the power consumption in pas-
sive offloading is much less than that of RF communications
and can be omitted [15]. Hence, the total energy consumption
in one time slot is given by ei = kf3i tl,i + ta,iβ̃(`a,i/ta,i),
corresponding to local computing and active offloading, re-
spectively. Let Ei denote the available energy in the i-th time
slot. Hence, the residual energy in the next time slot can be
simply denoted as follows:

Ei+1 = min
(
Emax,

(
Ei + ηp0|gi|2th,i − ei

)+)
, (5)

where Emax denotes the battery capacity, η denotes energy
conversion efficiency, and p0 denotes the transmit power
of HAP. Till this point, we can formulate the performance

67Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

optimization problem as follows:

max
ti,`i

E

[
1

T

∑
i∈T

R(ti, `i)

]
(6a)

s.t. th,i + ta,i + tp,i ≤ 1, (6b)
`a,i + `p,i + `l,i ≥ Li, (6c)

ta,iβ̃(`a,i/ta,i) + kf3i ti ≤ Ei + ηp0|gi|2th,i, (6d)

ti � 0 and `i � 0, ∀ i ∈ T , {1, 2, . . . , T}. (6e)

The expectation in the objective function is taken over all
instances of the random workload and channel realization.
It is clear that problem (6) is very difficult to solve due to
the stochastic nature and non-convex structure. In particular,
the objective function and the constraints are all non-convex.
The battery dynamics in (5) implies a dynamic optimization
approach with very high complexity. The uncertainty in work-
load also makes the optimization impractical for real-time
implementation.

B. MDP Reformulation of MEC Offloading Problem

With above practical challenges, the conventional model-
based optimization techniques become very inflexible and
inefficient. In the following, we resort to a model-free DRL
approach to optimize the MEC offloading decisions under
uncertain network environment. DRL expands the conven-
tional reinforcement learning approaches for solving Markov
decision process (MDP) with large action and state space.
The MDP framework for the MEC offloading problem can
be defined by a tuple {S,A,P,R}.
S represents the system state, denoting the set of obser-

vations of the network environment. For each edge user, the
system state s = (`, e, c) ∈ S includes the random workload
` ∈ {0, 1, . . . , L} at the beginning of each time slot, the energy
e ∈ {0, 1, . . . , E} in battery, and the finite-state channel
condition c ∈ {0, 1, . . . , C}. A is the continuous action space
defined as A = {(t, `)}, where ` = (`l, `a, `p) denotes the
workload allocation, and t corresponds to the time allocation
t = (th, tl, ta, tp) ∈ (0,1) among energy harvesting, local
computing, active, and passive offloading. P is the state
transition probability function denoting the distribution of the
next state si+1 ∈ S given the current state si ∈ S and
the offloading action ai ∈ A. This information is typically
uncertain to the decision maker and has to be learnt during
the interaction with the environment. R : S × A → R is the
reward function that evaluates the quality of action on each
state, defined as follows

r(si, ai) =
Lixi

β̃(ra,i)ta,i + kf3i tl,i
− wpo,i, (7)

We have xi = 1 as the workload is completed successfully,
otherwise xi = 0 and there is a waste of computing resources.

Given the dynamics of channel conditions, energy sta-
tus, and workload, each user device will choose its action
accordingly to maximize the accumulated reward V (s) =
E
[∑∞

i=0 γ
ir(si, ai)|s0 = s

]
, where γ denotes the discount

factor. Reinforcement learning has provided a solution to find
the optimal policy π∗ : S → A that maps each network state

Random noise

Optimizer Optimizer

Environment Actor Critic

Online network Online network

Target network Target network

Mini-batchReplay memory

soft update soft update

Transition samples

update updategrad grad

Take action

Update state

Reward & transition 𝑠௧, 𝑟௧ , 𝑠௧ାଵ

𝑎௧

𝑒௜, 𝑙௔,௜, 𝑙௣,௜, 𝑙௟,௜

𝑟ሺ𝑠௧, 𝑎௧), 𝑠௧ାଵ

𝑡௛, 𝑡௟ , 𝑡௔ , 𝑡௣
𝜋ሺ𝑠௧|𝜃௧ሻ

𝑠௧, 𝑎௧, 𝑟௧ , 𝑠௧ାଵ

𝜃

𝜋(∙ | 𝜃)

𝜋ᇱሺ𝑠௜ାଵሻ

𝑦௧

𝜋ሺ𝑠௜|𝜃௜ሻ

𝑠௧, 𝑎௧, 𝑟௧ , 𝑠௧ାଵ

Evaluate

𝑄(∙ , ∙ | 𝑤)

𝑤𝑤𝜃

𝑤′𝜃′

𝛻ఏ𝐽ሺ𝜃ሻ

𝜋(∙ | 𝜃′) 𝑄(∙ , ∙ | 𝑤′)

Fig. 2: Workflow of the DDPG algorithm.

s ∈ S to an action a ∈ A such that the state-value function
V (s) is maximized. With small and finite state and action
spaces, the optimal policy can be obtained by the Q-learning
algorithm. In particular, the optimal action on each state is
to maximize the Q-value function a∗i = argmaxa∈AQ(si, a),
and then we update the Q-value by the difference between the
current Q-value and its target yi as follows:

Qi+1(si, ai) = Qi(si, ai) + τi

[
yi −Qi(si, ai)

]
,

where τi can be viewed as a step-size and the target value yi
is evaluated by yi = r(si, ai) + γmaxai+1

Qi(si+1, ai+1).

C. Policy-based DRL for MEC Offloading
The Q-learning algorithm becomes unstable and even fails

to converge when the state and action spaces are large. In this
part, we introduce DRL to learn the optimal MEC offloading
policy, by using DNNs as the approximator for the Q-value
function. There are mainly value-based and policy-based DRL
approaches. In general, the value-based approaches, such as
DQN and its variants, are applicable to discrete action space,
while the continuous action space is more preferably tackled
by policy-based methods.

Considering the continuous MEC offloading decisions, we
adopt the policy-based DRL approach to learn the optimal
time and workload allocation strategies. The deep determin-
istic policy gradient (DDPG) algorithm combines DQN and
deterministic policy gradient in the actor-critic framework to
make the learning more stable and robust [16], by using the
experience replay and target Q-network for DNN training. The
policy-based DRL updates the parametric policy in a gradient
direction to improve the value function directly, which can
be rewritten as J(θ) =

∑
s∈S d

π(s)
∑
a∈A πθ(a|s)Qπ(s, a),

where dπ(s) is the stationary state distribution with the policy
πθ. DDPG relies on the deterministic policy gradient theorem
that simplifies the gradient evaluation ∇θJ(θ) as follows

∇θJ(θ) = Es∼dπ(s)[∇aQπ(s, a)∇θπθ(s)|a=πθ(s)], (8)

where πθ(s) produces a single deterministic action on the state
s, instead of a distribution over the action space. Hence, the
estimation ∇θJ(θ) can be performed efficiently by sampling
the historical trajectories.

The policy gradient in (8) motivates the actor-critic frame-
work. The actor network corresponds to the update of policy
parameter θ in gradient direction:

θt+1 = θt + αθ∇aQ(st, at|wt)∇θπθ(s)|a=πθ(s),

68Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 DDPG for Hybrid MEC offloading

Input: Initial workload, channel and energy conditions
Output: Convergent hybrid MEC offloading policy π∗

Initialize actor/critic online network parameters: θ, w
Copy parameters to target networks: θ′ ← θ, w′ ← w
Initialize replay memory
for episode k ≤ K do

Reset environment parameters.
for t = {1, 2, ..., T} do

Actor network sets action at = π(st|θ) +Nt
Execute action at, collect the tuple(st, at, rt, st+1)
Sample a mini-batch from replay memory
Update critic network by minimizing (9)
Update policy gradient in (8) by the mini-batch
Update θ′ and w′ for the target networks

end for
end for

where Q(st, at|wt) denotes the parameterized Q-function with
the DNN weight wt. For a better exploration in learning, we
construct the action by adding a random noise Nt to π(st|θt).
The critic network estimates the Q-value by updating the DNN
weight as follows:

wt+1 = wt + αwδt∇wQ(st, at|w),

where δt = yt−Qw(st, at|wt) denotes the temporal-difference
error between Qw(st, at|wt) and its target yt. The parameters
αθ and αw are viewed as step-sizes for parameter updating.
It is obvious that both the actor and critic networks can
be approximated by DNNs and mutually dependent in the
learning process.

For the critic network, the training of Q-network is similar
to the DQN method by sampling a mini-batch from the
experience replay memory. DDPG also adopts the online and
target networks to ensure the stability of learning [17]. The
DNN training aims to minimize the loss function:

L(w) = E
[
(yt −Q(st, at|w))2

]
, (9)

where yt is updated by yt = rt + γQ(st+1, π(st+1|θ′t)|w′t)
and the training sample (st, at, rt, st+1) is taken from a mini-
batch. For a small update rate τ , the parameters w′t and θ′t of
the target networks are updated by the following rules:

w′t+1 = τwt + (1− τ)w′t, (10)
θ′t+1 = τθt + (1− τ)θ′t, (11)

The work flow of the DDPG-based MEC offloading algorithm
is organized in Fig. 2.

IV. NUMERICAL EVALUATION

In this section, we numerically evaluate the performance of
the DDPG algorithm. The transmit power of HAP is set to
p0 = 10 mW and energy conversion efficiency is η = 0.6.
The channel remains static within one time slot and follows
a finite-state Markov chain in different time sots. We assume
that the workload of each user is randomly generated among
0 and 50 kbits. The constant circuit power is set as pc = 1

0 20000 40000 60000 80000 100000
Episode

2500

5000

7500

10000

12500

15000

17500

20000

W
or

kl
oa

d

DDPG
DQN

Greedy scheme

(a) Workload completed by different algorithms

0 20000 40000 60000 80000 100000
Episode

3000

4000

5000

6000

7000

8000

W
or

kl
oa

d
Active mode
Passive mode

Local computing

(b) Workload attributed to different computation schemes

Fig. 3: Performance comparison between DDPG and DQN methods.

µW . The noise power is σ2 = −110 dBm and the bandwidth
is given by B = 400 kHz.

Figure 3(a) shows the total workload completed by different
MEC offloading algorithms. The greedy algorithm means that
the user always chooses the myopic action to maximize its in-
stant reward. At convergence, both the DDPG and DQN based
MEC offloading schemes perform much better than the greedy
algorithm. Besides, the total reward by the DDPG algorithm is
always higher than that of the DQN method. We observe that
both DDPG and DQN methods reach the convergence after
training in 30k episodes. Though the DDPG algorithm does
not show better learning speed, it generally has a more stable
learning result, as illustrated in Fig. 3(a). Fig. 3(b) shows the
workload allocated to different computation schemes, includ-
ing local computing, active and passive offloading. Before 25k
episodes, the workloads in three schemes change dynamically
and thus the workload outage probability will be high in the
early stage. Initially, local computing completes the largest
part of workload. Besides, the passive offloading scheme takes
more workload than that of the active offloading scheme. This
implies that the edge device initially has insufficient energy
supply and prefers local computing and passive offloading
scheme with low energy consumption. After 25k episodes, the
workload attributed to the active offloading scheme continues
to rise. That is because the edge node gradually improves its
time allocation strategy and harvests more RF power to sustain
its active offloading.

69Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

0 20000 40000 60000 80000 100000
Episode

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Re

wa
rd

DDPG
DQN

Greedy scheme

(a) Rewards performance of different algorithm

0 20000 40000 60000 80000 100000
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
or

kl
oa

d
ou

ta
ge

 p
ro

ba
bi

lit
y

DDPG
DQN

Greedy scheme

(b) Outage performance of different algorithm

Fig. 4: Performance comparison of different algorithm.

Figure 4(a) shows the total reward (i.e., the energy efficiency
minus the price for MEC offloading service) in different
algorithms. It is clear that the DDPG algorithm for continuous
time and workload allocation achieves the highest reward,
compared to the greedy algorithm and the conventional DQN
method for discrete control problem. Typically, the DQN
method has to approximate the continuous action space by a
finite discrete set, which inevitably brings quantization errors
and results in reduced reward performance. Compared to the
DQN method, the DDPG algorithm can have a more precise
control over the continuous decision variables. This is verified
by the stable learning curves in both reward and the outage
probability as shown in Fig. 4(b). The precise control in
the DDPG algorithm can minimize its outage performance,
i.e., nearly all workload in each time slot can be finished
successfully.

V. CONCLUSION

In this paper, considering a continuous control problem,
we have proposed a policy-based deep reinforcement learning
algorithm to optimize the time and workload allocation in
a novel backscatter-assisted hybrid MEC offloading scenario.
Comparing with the value-based deep Q-network algorithm,
the policy-based deep deterministic policy gradient method
achieves significant improvement in terms of reward perfor-
mance, stability, and the learning speed.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile
edge computing: Survey and research outlook.” [Online]. Available:
https://arxiv.org/abs/1701.01090v3

[2] J. Li, J. Xu, S. Gong, X. Huang, and P. Wang, “Robust radio mode
selection in wirelessly powered communications with uncertain channel
information,” in proc. IEEE GLOBECOM, Dec. 2017.

[3] C. Boyer and S. Roy, “Backscatter communication and RFID: Coding,
energy, and MIMO analysis,” IEEE Trans. Commun., vol. 62, no. 3, pp.
770–785, March 2014.

[4] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,
“Ambient backscatter: Wireless communication out of thin air,” in Proc.
ACM SIGGOMM, New York, NY, USA, Aug. 2013.

[5] S. Gong, J. Xu, D. Niyato, X. Huang, and Z. Han, “Backscatter-aided
cooperative relay communications in wireless-powered hybrid radio
networks,” IEEE Network, 2019.

[6] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” CoRR, vol. abs/1810.07862,
2018. [Online]. Available: http://arxiv.org/abs/1810.07862

[7] C. Zhang, Z. Liu, B. Gu, K. Yamori, and Y. Tanaka, “A deep rein-
forcement learning based approach for cost-and energy-aware multi-flow
mobile data offloading,” IEICE Trans. Commun., vol. E101-B, no. 7, pp.
2017–2025, 2018.

[8] L. Ji, G. Hui, L. Tiejun, and L. Yueming, “Deep reinforcement learning
based computation offloading and resource allocation for mec,” in proc.
IEEE WCNC, 2018, pp. 1–5.

[9] L. Huang, S. Bi, and Y. A. Zhang, “Deep reinforcement learning
for online offloading in wireless powered mobile-edge computing
networks,” CoRR, vol. abs/1808.01977, 2018. [Online]. Available:
http://arxiv.org/abs/1808.01977

[10] J. Li, J. Xu, S. Gong, C. Li, and D. Niyato, “A game theoretic approach
for backscatter-aided relay communications in hybrid radio networks,”
in proc. IEEE GLOBECOM, Dec. 2018.

[11] J. K. Devineni and H. S. Dhillon, “Ambient backscatter systems: Exact
average bit error rate under fading channels,” IEEE Transactions on
Green Communications and Networking, vol. 3, no. 1, 2019.

[12] W. Chen, W. Liu, L. Gao, S. Gong, C. Li, and K. Zhu, “Backscatter-
aided relay communications in wireless powered hybrid radio networks,”
in proc. IEEE WCNC, 2019.

[13] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in IEEE
INFOCOM, Apr. 2016, pp. 1–9.

[14] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Communications Letters, vol. 7, pp. 420–423, 2018.

[15] D. Niyato, D. I. Kim, M. Maso, and Z. Han, “Wireless powered commu-
nication networks: Research directions and technological approaches,”
IEEE Wireless Commun., vol. PP, no. 99, pp. 2–11, 2017.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learning Representations (ICLR), May
2016.

[17] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artificial Intelligence,
Feb. 2016, pp. 2094–2100.

70Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 14:30:57 UTC from IEEE Xplore. Restrictions apply.

